V = 2587.4 (5) Å³

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-3}$

 $0.15 \times 0.10 \times 0.05 \text{ mm}$

T = 100 (2) K

Z = 8

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(2-Ethylphenyl)phthalimide

Yen May Fan, Norzalida Zakaria, Azhar Ariffin* and Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: azahar70@um.edu.my

Received 2 July 2008; accepted 3 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.043; *wR* factor = 0.105; data-to-parameter ratio = 17.2.

In the title compound, C₁₆H₁₃NO₂, the phthalimide and benzene ring systems form a dihedral angle of $77.2 (1)^{\circ}$.

Related literature

The crystal structures of a number of phenyl-substituted Nphenylphthalimides have been reported. For the 2-tolyl analogue, see: Bocelli & Cantoni (1989). For the 2,4dimethylphenyl analogue, see: Magnomedova et al. (1980); Shahzadi et al. (2006). For the 2,6-dimethylphenyl and 2,4,6trimethylphenyl analogues, see: Voliotis et al. (1984). For background literature on kinetic studies, see: Sim et al. (2006, 2007).

Experimental

Crystal data

$C_{16}H_{13}NO_2$
$M_r = 251.27$
Orthorhombic, Pbca
a = 15.344 (2) Å
b = 7.7731 (8) Å
c = 21.693 (2) Å

Data collection

Bruker SMART APEX diffractometer Absorption correction: none 15518 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ wR(F²) = 0.104 S = 1.012961 reflections

 $R_{\rm int} = 0.054$

2961 independent reflections

2204 reflections with $I > 2\sigma(I)$

172 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.19$ e Å⁻³

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

The authors are grateful for a SAGA grant (No. 06-02-03-0147) supporting this study and thank the University of Malaya for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2280).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bocelli, G. & Cantoni, A. (1989). Acta Cryst. C45, 1658-1660.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Magnomedova, N. S., Dzyabchenko, A. V., Zavodnik, V. E. & Bel'skii, V. K. (1980). Cryst. Struct. Commun. 9, 713-715.

Shahzadi, S., Ali, S., Najam-ul-Haq, M. & Wurst, K. (2006). Acta Cryst. E62, 02586-02588

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sim, Y.-L., Ariffin, A. & Khan, M. N. (2006). Int. J. Chem. Kinet. 38, 746-758.

Sim, Y.-L., Ariffin, A. & Khan, M. N. (2007). J. Org. Chem. 72, 2392-2401.

Voliotis, S., Arrieta, J. M. & Germain, G. (1984). Acta Cryst. C40, 1946-1948. Westrip, S. P. (2008). publCIF. In preparation.

supplementary materials

Acta Cryst. (2008). E64, o1699 [doi:10.1107/S1600536808020448]

N-(2-Ethylphenyl)phthalimide

Y. M. Fan, N. Zakaria, A. Ariffin and S. W. Ng

Comment

In our studies aimed at understanding the nature of intramolecular general base (IGB) and intramolecular general acid (IGA) catalysis in the hydrolysis of *N*-substituted phthalimides, we required the preparation of *N*-phenylphthalimides having a substituent at either the *ortho-* and/or the *para*-position. The title compound (I, Fig. 1) is an such an example. In (I), the phthalimido and phenylene portions are flat and are inclined at an angle of 77.2 (1)°.

Experimental

Phthalic anhydride (5.0 g, 33.8 mmol) and *o*-ethylaniline (4.91 g, 40.5 mmol) were dissolved in glacial acetic acid (15 ml). The mixture was heated at 393–413 K for 4 h; the completion of the reaction was monitored by thin layer chromatography. The mixture was quenched with water. The solid that separated was collected and recrystallized twice from ethanol to give colorless crystals of (I) in 90% yield.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

Figures

Fig. 1. Molecular structure of (I) drawn at the 70% probability level showing atom labelling. Hydrogen atoms are drawn as spheres of arbitrary radiius.

N-(2-Ethylphenyl)phthalimide

Crystal data
C ₁₆ H ₁₃ NO ₂
$M_r = 251.27$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
a = 15.344 (2) Å
<i>b</i> = 7.7731 (8) Å
<i>c</i> = 21.693 (2) Å
$V = 2587.4 (5) \text{ Å}^3$

 $F_{000} = 1056$ $D_{\rm x} = 1.290 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2189 reflections $\theta = 2.3-24.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 (2) KIrregular block, colourless Z = 8

$0.15 \times 0.10 \times 0.05 \text{ mm}$

Data collection

Bruker SMART APEX diffractometer	2204 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.054$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 100(2) K	$\theta_{\min} = 2.3^{\circ}$
ω scans	$h = -19 \rightarrow 11$
Absorption correction: none	$k = -10 \rightarrow 10$
15518 measured reflections	$l = -28 \rightarrow 28$
2961 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.104$	$w = 1/[\sigma^2(F_o^2) + (0.0466P)^2 + 0.7719P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
2961 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.19 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1	0.48223 (7)	0.23894 (15)	0.51820 (5)	0.0271 (3)
O2	0.35501 (7)	0.02107 (14)	0.69268 (5)	0.0251 (3)
N1	0.44007 (8)	0.11973 (15)	0.61157 (5)	0.0171 (3)
C1	0.42560 (10)	0.19354 (18)	0.55323 (6)	0.0181 (3)
C2	0.32925 (9)	0.20247 (18)	0.54575 (6)	0.0166 (3)
C3	0.28005 (10)	0.2658 (2)	0.49751 (7)	0.0204 (3)
Н3	0.3066	0.3137	0.4619	0.024*
C4	0.18974 (10)	0.2565 (2)	0.50335 (7)	0.0217 (3)
H4	0.1538	0.2979	0.4709	0.026*
C5	0.15121 (10)	0.1874 (2)	0.55597 (7)	0.0226 (3)
H5	0.0895	0.1819	0.5586	0.027*
C6	0.20135 (10)	0.12648 (19)	0.60476 (7)	0.0203 (3)
Н6	0.1752	0.0812	0.6410	0.024*
C7	0.29078 (10)	0.13462 (18)	0.59830 (6)	0.0173 (3)
C8	0.36106 (9)	0.08198 (18)	0.64160 (7)	0.0176 (3)
C9	0.52461 (9)	0.09843 (18)	0.63950 (6)	0.0162 (3)
C10	0.57623 (10)	-0.03944 (19)	0.62150 (7)	0.0201 (3)

H10	0.5564	-0.1168	0.5907	0.024*
C11	0.65713 (10)	-0.0634 (2)	0.64893 (7)	0.0221 (3)
H11	0.6929	-0.1572	0.6368	0.027*
C12	0.68547 (10)	0.0498 (2)	0.69407 (7)	0.0222 (3)
H12	0.7405	0.0330	0.7132	0.027*
C13	0.63332 (10)	0.18808 (19)	0.71133 (7)	0.0208 (3)
H13	0.6535	0.2653	0.7421	0.025*
C14	0.55168 (10)	0.21587 (18)	0.68431 (6)	0.0174 (3)
C15	0.49902 (10)	0.37245 (19)	0.70174 (7)	0.0215 (3)
H15A	0.5072	0.3970	0.7462	0.026*
H15B	0.4364	0.3489	0.6947	0.026*
C16	0.52646 (11)	0.5296 (2)	0.66405 (8)	0.0293 (4)
H16A	0.4912	0.6290	0.6763	0.044*
H16B	0.5175	0.5061	0.6201	0.044*
H16C	0.5882	0.5542	0.6716	0.044*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0171 (6)	0.0436 (7)	0.0207 (6)	-0.0029 (5)	0.0029 (5)	0.0057 (5)
O2	0.0185 (6)	0.0354 (6)	0.0215 (5)	-0.0017 (5)	-0.0006 (5)	0.0095 (5)
N1	0.0125 (6)	0.0226 (6)	0.0161 (6)	-0.0005 (5)	-0.0006 (5)	0.0014 (5)
C1	0.0171 (8)	0.0212 (7)	0.0160 (7)	-0.0012 (6)	-0.0001 (6)	-0.0013 (6)
C2	0.0144 (7)	0.0177 (7)	0.0176 (7)	-0.0006 (6)	-0.0005 (6)	-0.0015 (5)
C3	0.0192 (8)	0.0248 (8)	0.0173 (7)	0.0003 (6)	-0.0008 (6)	0.0004 (6)
C4	0.0195 (8)	0.0238 (8)	0.0217 (7)	0.0036 (6)	-0.0062 (6)	0.0004 (6)
C5	0.0117 (7)	0.0279 (8)	0.0283 (8)	0.0010 (6)	-0.0013 (6)	-0.0007 (7)
C6	0.0157 (8)	0.0238 (8)	0.0215 (7)	-0.0013 (6)	0.0015 (6)	0.0021 (6)
C7	0.0163 (7)	0.0173 (7)	0.0183 (7)	0.0009 (6)	-0.0012 (6)	0.0001 (6)
C8	0.0148 (7)	0.0191 (7)	0.0191 (7)	-0.0006 (6)	-0.0005 (6)	-0.0004 (6)
C9	0.0106 (7)	0.0216 (7)	0.0164 (7)	-0.0016 (6)	0.0002 (6)	0.0035 (5)
C10	0.0193 (8)	0.0222 (8)	0.0188 (7)	-0.0014 (6)	-0.0007 (6)	-0.0025 (6)
C11	0.0177 (8)	0.0236 (8)	0.0251 (8)	0.0048 (6)	0.0018 (6)	0.0001 (6)
C12	0.0146 (8)	0.0265 (8)	0.0254 (8)	-0.0003 (6)	-0.0032 (6)	0.0029 (6)
C13	0.0173 (8)	0.0240 (8)	0.0211 (7)	-0.0041 (6)	-0.0029 (6)	-0.0009 (6)
C14	0.0149 (7)	0.0195 (7)	0.0179 (7)	-0.0010 (6)	0.0007 (6)	0.0013 (6)
C15	0.0189 (8)	0.0221 (8)	0.0234 (7)	0.0017 (6)	-0.0025 (6)	-0.0032 (6)
C16	0.0270 (9)	0.0239 (8)	0.0369 (9)	0.0032 (7)	-0.0026 (7)	0.0028 (7)

Geometric parameters (Å, °)

O1—C1	1.2072 (17)	C9—C10	1.389 (2)
O2—C8	1.2085 (17)	C9—C14	1.397 (2)
N1—C1	1.4071 (18)	C10—C11	1.389 (2)
N1—C8	1.4072 (18)	С10—Н10	0.9500
N1—C9	1.4412 (18)	C11—C12	1.387 (2)
C1—C2	1.489 (2)	C11—H11	0.9500
C2—C3	1.381 (2)	C12—C13	1.391 (2)
C2—C7	1.3879 (19)	C12—H12	0.9500

supplementary materials

C3—C4	1.393 (2)	C13—C14	1.400 (2)
С3—Н3	0.9500	С13—Н13	0.9500
C4—C5	1.393 (2)	C14—C15	1.509 (2)
C4—H4	0.9500	C15—C16	1.529 (2)
C5—C6	1.392 (2)	C15—H15A	0.9900
С5—Н5	0.9500	C15—H15B	0.9900
C6—C7	1.381 (2)	C16—H16A	0.9800
С6—Н6	0.9500	C16—H16B	0.9800
С7—С8	1.488 (2)	C16—H16C	0.9800
C1—N1—C8	111.43 (12)	C14—C9—N1	119.02 (13)
C1—N1—C9	124.54 (12)	C9—C10—C11	119.53 (14)
C8—N1—C9	123.84 (11)	С9—С10—Н10	120.2
O1—C1—N1	124.87 (14)	С11—С10—Н10	120.2
O1—C1—C2	129.23 (13)	C12—C11—C10	119.83 (14)
N1—C1—C2	105.90 (12)	C12—C11—H11	120.1
C3—C2—C7	121.70 (14)	C10—C11—H11	120.1
$C_3 - C_2 - C_1$	129.94 (13)	C11—C12—C13	120.01 (14)
C7-C2-C1	108 36 (12)	$C_{11} - C_{12} - H_{12}$	120.0
$C^2 - C^3 - C^4$	117 13 (14)	C13 - C12 - H12	120.0
С2—С3—Н3	121.4	C_{12} C_{13} C_{14}	121.41 (14)
C4 - C3 - H3	121.1	C12 - C13 - H13	119.3
$C_{5} - C_{4} - C_{3}$	121.1	C12 - C13 - H13	119.3
C_{5} C_{4} H_{4}	119.4	C9-C14-C13	117.17 (13)
$C_3 = C_4 = H_4$	119.4	$C_{2} = C_{14} = C_{15}$	117.17(13) 122.84(13)
C_{4}	117.4	$C_{12} = C_{14} = C_{15}$	122.04(13)
$C_4 = C_5 = C_0$	121.31 (14)	$C_{13} - C_{14} - C_{15}$	119.91 (13)
C4 = C3 = H5	119.5	$C_{14} = C_{15} = C_{16}$	111.27 (13)
C6—C5—H5	119.5	C14—C15—H15A	109.4
C7C5	117.18 (14)	CIG-CIS-HISA	109.4
С/—С6—Н6	121.4	CI4—CI5—HI5B	109.4
С5—С6—Н6	121.4	С16—С15—Н15В	109.4
C6-C/-C2	121.56 (13)	Н15А—С15—Н15В	108.0
C6-C/-C8	130.07 (13)	С15—С16—Н16А	109.5
C2—C7—C8	108.35 (13)	C15—C16—H16B	109.5
O2—C8—N1	124.92 (13)	H16A—C16—H16B	109.5
O2—C8—C7	129.13 (13)	C15—C16—H16C	109.5
N1—C8—C7	105.95 (12)	H16A—C16—H16C	109.5
C10—C9—C14	122.04 (13)	H16B—C16—H16C	109.5
C10—C9—N1	118.94 (13)		
C8—N1—C1—O1	179.48 (14)	C9—N1—C8—C7	175.82 (12)
C9—N1—C1—O1	4.4 (2)	C6—C7—C8—O2	-0.6 (3)
C8—N1—C1—C2	-0.23 (15)	C2—C7—C8—O2	178.26 (15)
C9—N1—C1—C2	-175.35 (12)	C6—C7—C8—N1	-179.73 (15)
O1—C1—C2—C3	-0.7 (3)	C2C7C8N1	-0.86 (15)
N1—C1—C2—C3	179.03 (14)	C1—N1—C9—C10	-80.22 (18)
O1—C1—C2—C7	179.98 (15)	C8—N1—C9—C10	105.25 (16)
N1—C1—C2—C7	-0.33 (15)	C1—N1—C9—C14	100.51 (16)
C7—C2—C3—C4	-0.9 (2)	C8—N1—C9—C14	-74.03 (18)
C1—C2—C3—C4	179.78 (14)	C14—C9—C10—C11	0.5 (2)

C2—C3—C4—C5	0.5 (2)	N1-C9-C10-C11	-178.73 (13)
C3—C4—C5—C6	0.5 (2)	C9—C10—C11—C12	0.2 (2)
C4—C5—C6—C7	-1.1 (2)	C10-C11-C12-C13	-0.7 (2)
C5—C6—C7—C2	0.7 (2)	C11-C12-C13-C14	0.4 (2)
C5—C6—C7—C8	179.48 (14)	C10-C9-C14-C13	-0.8 (2)
C3—C2—C7—C6	0.3 (2)	N1-C9-C14-C13	178.48 (12)
C1—C2—C7—C6	179.72 (13)	C10-C9-C14-C15	176.18 (13)
C3—C2—C7—C8	-178.69 (13)	N1-C9-C14-C15	-4.6 (2)
C1—C2—C7—C8	0.73 (15)	C12—C13—C14—C9	0.3 (2)
C1—N1—C8—O2	-178.51 (14)	C12-C13-C14-C15	-176.74 (14)
C9—N1—C8—O2	-3.3 (2)	C9—C14—C15—C16	-92.56 (17)
C1—N1—C8—C7	0.66 (15)	C13—C14—C15—C16	84.31 (17)

Fig. 1